合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(三)
> 表面張力儀工作原理、特點及使用注意事項
> 表面張力儀應(yīng)用:研究活性磁化水對無煙煤塵的濕潤作用(二)
> 不同因素對黏彈性顆粒驅(qū)油劑界面張力及擴張流變參數(shù)的影響(二)
> 嵌段聚醚型破乳劑AE-1和SP169與模擬油的界面張力測定
> ?高速印刷潤版液動態(tài)表面張力變化及影響因素
> 溫度、截斷半徑、模擬分子數(shù)對水汽液界面特性的影響規(guī)律(一)
> ?糖脂類生物表面活性劑在石油工業(yè)中的作用機制
> 槐糖脂屬于微生物源表面活性劑
> 基于朗繆爾張力儀研究抗菌肽與磷脂單層的相互作用
推薦新聞Info
-
> 紫檀芪的穩(wěn)定性增強型抗氧化劑制作備方及界面張力測試——結(jié)果與討論、結(jié)論
> 紫檀芪的穩(wěn)定性增強型抗氧化劑制作備方及界面張力測試—— 引言、材料與方法
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機制(下)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機制(中)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機制(上)
> 電鍍液表面張力、接觸角、流速以及壓強等因素對硅通孔浸潤過程的影響(二)
> 電鍍液表面張力、接觸角、流速以及壓強等因素對硅通孔浸潤過程的影響(一)
> 基于界面張力儀和電位儀分析SPF減水劑結(jié)構(gòu)-性能關(guān)系(二)
> 基于界面張力儀和電位儀分析SPF減水劑結(jié)構(gòu)-性能關(guān)系(一)
> ?氣凝膠材料種類、應(yīng)用領(lǐng)域及未來發(fā)展方向
基于界面張力儀和電位儀分析SPF減水劑結(jié)構(gòu)-性能關(guān)系(二)
來源:武漢理工大學(xué)學(xué)報 瀏覽 60 次 發(fā)布時間:2025-11-25
2.2 SPF減水劑表面張力分析
減水劑是一種表面活性劑,不同濃度下SPF、AS和AH3種高效減水劑溶液表面張力見圖3。
從圖3可知,SPF、AS和AH3種高效減水劑溶液的表面張力隨著高效減水劑濃度的增大而減小,SPF減水劑能降低水的表面張力,但沒有AS、AH降低得多,其主要原因是AS、AH在氣液界面的取向能力大且對混凝土有一定的引氣作用,而SPF不能明顯降低溶液表面張力,其對水泥顆粒分散作用中濕潤作用貢獻較小。
2.3 SPF減水劑電位分析
1)SPF對水泥顆粒表面電位的影響ξ電位表示水泥顆粒間靜電排斥力的大小。ξ電位越大水泥顆粒間的靜電斥力越大,減水劑分散作用越強。摻加不同濃度SPF、AS和AH的水泥懸浮體系的ξ電位,如圖4所示。
從圖4可知,加入SPF、AS和AH減水劑后隨著濃度的增大,ξ電位由負(fù)變化到更負(fù)且絕對值增大,隨著減水劑濃度的增大ξ電位的絕對值增大,當(dāng)減水劑濃度增大到5g/L時,ξ電位增加緩慢。未水化的水泥顆粒表面的電位在-10mV左右,而摻加SPF、AS和AH后水泥顆粒表面的電位分別為-10—15mV和-10—20mV,加入SPF高效減水劑后電位絕對值最大,在水泥顆粒表面產(chǎn)生的靜電斥力最大。
2)SPF對水泥顆粒表面電位穩(wěn)定性的影響從圖5可知,摻SPF、AS和AH減水劑的水泥顆粒表面起始電位很高,其中加入SPF高效減水劑后電位最大,達到了-15mV,隨著時間的推移摻SPF、AS和AH的水泥顆粒表面電位與起始電位相比有一定的變化,在120min以后,摻SPF減水劑水泥顆粒表面電位與起始電位相比有一定的減小。
2.4 SPF高效減水劑應(yīng)用性能評價
1)SPF減水劑的摻量與減水率的關(guān)系SPF減水劑的減水率以及SPF減水劑不同摻加量對混凝土的凝結(jié)時間和不同齡期強度的影響的混凝土配合比如表3所示。選用水泥是中國水泥廠的小野田P52.5水泥,砂率36%—40%,碎石粒徑范圍5—40mm連續(xù)級配,小石占40%,大石占60%,控制坍落度在7—9cm。
表3 SPF減水率實驗配合比
| 編號 | 配合比 | 外加劑 | ||||||
| 水泥/kg | 砂/kg | 大石/kg | 小石/kg | 摻量/% | 用量/kg | 用水量/kg | 塌落度/cm | |
| 0 | 330 | 710 | 695 | 463 | 0 | 0 | 200 | 8.2 |
| 1 | 330 | 710 | 695 | 463 | 0.3 | 2.828 | 184.8 | 9.0 |
| 2 | 330 | 710 | 695 | 463 | 0.4 | 3.771 | 173.5 | 9.0 |
| 3 | 330 | 710 | 695 | 463 | 0.5 | 4.714 | 166.5 | 9.0 |
| 4 | 330 | 710 | 695 | 463 | 0.6 | 5.657 | 160.3 | 9.0 |
從圖6可以看出,隨著外加劑摻量的增大,減水率有成比例增加的趨勢,SPF低摻量下即具有較強的減水分散效果,在摻量為0.5%時減水率已達到18.3%,繼續(xù)增加摻量后減水率處于平緩狀態(tài)?;炷恋暮鸵仔粤己?,不離析、不泌水。
2)不同摻量的SPF減水劑的強度發(fā)展規(guī)律制得的SPF在摻加0.3%—0.6%過程中,混凝土在不同齡期的抗壓強度,如圖7所示。
從圖7看到隨著減水劑摻量的增加,各組配比混凝土的3d、7d、28d不同齡期的抗壓強度都在增加,減水劑SPF摻量0.6%時,混凝土的抗壓強度達到34.39MPa、45.66MPa、55.48MPa,是同齡期的空白混凝土強度的174%、166%、153%,SPF減水劑對混凝土有明顯的增強作用,同時摻加SPF減水劑的混凝土早期強度發(fā)展很快,3d的強度可以達到28d強度的60%—70%,7d的強度可以達到28d強度的80%—90%,混凝土的后期強度也有增長的趨勢。
3結(jié)論
a.SPF高效減水劑脂肪族分子中含有磺酸基、羥基和羰基等官能團。羥基和磺酸基是強的親水基。重均分子量(Mw)在18000—22000之間,數(shù)均分子量(Mn)在16000—18000之間,多分散性系數(shù)為1.11,產(chǎn)物的分子量分布較窄,大分子聚合物較少,小分子聚合物較集中。
b.SPF高效減水劑不能明顯降低溶液表面張力,隨著SPF高效減水劑濃度的增大,ξ電位由負(fù)變化到更負(fù)且絕對值增大,減水劑濃度增大到5g/L時,ξ電位增加緩慢,摻SPF高效減水劑的水泥顆粒表面起始ξ電位最大,隨著時間的推移摻SPF減水劑水泥顆粒表面ξ電位與起始ξ電位相比有一定的減小。
c.SPF高效減水劑應(yīng)用性能研究表明,隨著摻量的增大,減水率有成比例增加的趨勢,低摻量下即具有較強的減水分散效果,繼續(xù)增加摻量后減水率處于平緩狀態(tài)。摻加SPF高效減水劑對混凝土有明顯的增強作用,隨著減水劑摻量的增加,不同齡期的抗壓強度都在增加,同時混凝土早期強度發(fā)展很快,3d的強度可達到28d強度的60%—70%,7d強度可達到28d強度的80%—90%,混凝土后期強度也有增長的趨勢。





